
The Birth of Object Orientation: the Simula

Languages⋆

Ole-Johan Dahl

Dept. of Informatics, University of Oslo, Norway

Abstract. The development of the programming languages Simula I
and Simula 67 is briefly described. An attempt is made also to explain
the cultural impact of the languages, in particular the object oriented
aspects.

1 Introduction

In 1962 Kristen Nygaard, KN, initiated a project for the development of
a discrete event simulation language, to be called Simula. At the time KN
was the director of research at the Norwegian Computing Center, NCC, (a
semi-governmental institution). KN also served as the administrative leader
for the duration of the project. This required much creative manipulation
in an environment that outside the NCC was largely hostile. The language
development proper was a result of a close cooperation between KN and
the author, OJD, whereas implementation considerations were mainly the
responsibility of the latter.

We were both fostered at the Norwegian Defence Research Establishment in
the pioneering group headed by Jan V. Garwick, the father of Computer Science
in Norway. But our backgrounds were nevertheless quite different. KN had done
Monte Carlo computations calibrating uranium rods for a nuclear reactor and
later operations research on military systems. OJD had developed basic software
together with Garwick and designed and implemented a high level programming
language. Our difference in background probably accounts for some of the success
of the Simula project.

The present paper mainly deals with language issues, including some thoughts
on their possible cultural impact, especially on later programming languages. For
other aspects of the project the reader is referred to [30].

Two language versions were defined and implemented. The first one, later
called Simula I, was developed under a contract by UNIVAC. (UNIVAC wanted
us to provide also a Fortran-based version, but that was abandoned because
the block structure turned out to be essential to our approach.) It was up and
running by the end of 1964. The second version, Simula 67, was sponsored
by the NCC itself. It is a generalization and refinement of the former, fairly
ambitious, intended mainly as a general purpose programming language, but
with simulation capabilities.

⋆ An almost identical version of this paper has been published in Software pioneers,
Springer, 2002.

2 Simula I

It was decided at an early stage that our language should be based on a well
known one. Algol 60 was chosen for the following main reasons:

– the block structure,

– good programming security,

– European patriotism.

We realised that in order to profit from block structure in simulation models it
would be necessary to break out of the strict LIFO regime of block instances in
Algol. Thus, a new storage management system was developed based on a list
structured free store, [3]. Then a useful simulation language could be defined by
adding a few special purpose mechanisms to Algol 60:

– A procedure-like activity declaration giving rise to so called “processes”.
Processes could range from record-like data structures to block structured
programs executing in a coroutine-like fashion, [35], [9], over a simulated
system time.

– Explicit process pointers for dynamic naming and referencing. (The pointers
were indirect through list forming “element” records.)

– A mechanism for accessing, from the outside, quantities local to the outer-
most block level of processes, designed so that the access security inherent
in Algol would be maintained (the inspect construct).

– A few run time mechanisms for the scheduling and sequencing of processes in
system time, such as hold(. . .), suspending the calling process for a specified
amount of system time.

The following skeleton example could be a small fragment of a road traffic
simulation. It is taken from the Simula I manual, [4], but slightly extended.
It may serve to indicate the flavour of the language.

SIMULA begin activity Car;
begin real X0, T 0, V ;

real procedure X ; X := X0+V ∗(time−T 0);
procedure newV (V new); real V new;

begin X0 := X ; T 0 := time; V := V new end;
Car behaviour: ; hold(<travel time>);

end of Car;
activityPolice;
begin ; inspect <process> when Car do

if X <is within city> and V >50 then

begin newV (50); <give fine> end;
end of Police;
main program: <initialise>; hold(<simulation period>)

end of simulation model;

The example shows that the idea of data objects with associated operators was
under way already in 1965. According to a comment in [4] it was a pity that the
variable attributes of a Car process could not be hidden away in a subblock. It
would have required the accessing procedures to be hidden similarly.

New processes would be generated explicitly. For programming security
reasons, however, process deletions had to be implicit, in our implementation
through reference counts and a last resort garbage collector. The bulk of the
implementation effort therefore consisted in writing a new run time system
for the Algol system provided by UNIVAC; the compiler extensions, on the
other hand, were minimal. The “block prefix” SIMULA served to introduce
the Simula I additions to Algol. Consequently any Algol program not containing
that keyword would execute normally on our compiler. That was an important
consideration in those days.

A paper on Simula I was published in CACM 1966, [5]. It was also the main
topic of lectures given by OJD at the NATO Summer School at Vilard-de-Lans
the same year. The lectures were written up and published as a chapter of [6].

The language was used for simulation purposes as well as for teaching at
several locations at home and abroad, also within the UNIVAC organization.
A modified version was used for Burroughs computers. This was through the
advocacy of Don Knuth and J. McNeley, the authors of SOL, another Algol-like
simulation language.

3 Simula 67

In spite of the success of Simula I as a practical tool it became increasingly clear
that the activity/process concepts, if stripped from all references to simulated
time, would be useful for programming and system design in general. If possible
the special purpose simulation facilities should be definable within the new
language. Also the list processing facilities of Simula I would be useful, although
we felt that the referencing mechanism should be simplified.

At the Vilard-de-Lans Summer School Tony Hoare had put forth a proposal
for “record handling” with record classes and subclasses, as well as record
references restricted to, or “qualified by”, a given class or subclass by declaration.
Attribute accessing was by dot notation, see [19], as well as [17] and [18].

We chose the terms “class” and “objects” of classes for our new Simula. The
notion of subclass was especially appealing to us, since we had seen many cases
of objects belonging to different classes having common properties. It would
be useful to collect the common properties in a separate class, say C to be
specialised differently for different purposes, possibly in different programs. The
solution came with the idea of class prefixing: using C as a prefix to another
class, the latter would be taken to be a subclass of C inheriting all properties of
C.

Technically the subclass would be seen as “concatenated” class in which the
parameter parts, the block heads, and the block tails of the two classes were
juxtaposed (The block tail of the prefixing class could be separated into initial

actions and final actions, that of the prefixed class sandwiched between them.)
The attributes of a compound object would be accessible by dot notation down
to the prefix level of the qualifying class of the reference used. Access to deeper
levels could be achieved by class discrimination as in Simula I.

The breakthrough happened in January of 1967. An IFIP sponsored working
conference on simulation languages had been approved to take place in Oslo in
May. There followed some hectic winter months during which our new concepts
were explored and tested. A paper was ready just in time for advance distribution
to the invitees, [7]. The new language was to be called Simula 67, [8]. The
paper occurring in the proceedings was mended by the addition of “virtual”
specifications, see below.

One way of using a class, which appeared important to us, was to collect
concepts in the form of classes, procedures, etc under a single hat. The resulting
construct could be understood as a kind of “application language” defined on
top of the basic one. It would typically be used as a prefix to an in-line block
making up the application program.

We illustrate this idea by showing a simplified version of a SIMULATION

class defining the simulation oriented mechanisms used in our Simula I example.

class SIMULATION ;
begin class process;

begin real EventT ime, NextEvent; end;
ref(process) current;
comment current points to the currently operating process.

It is the head of the “time list” of scheduled ones,
sorted with respect to nondecreasing EventT imes;

real procedure time; time := current.EventT ime;
procedure hold(deltaT); real deltaT ;
begin current.EventT ime := time+deltaT ;

if time ≥ current.NextEvent.EventT ime then

begin ref(process)P ; P :− current; current :−P.NextEvent;
<move P to the right position in the time list>;

resume(current) end end of hold;
.

end of SIMULATION ;

SIMULATION begin

process class Car;
begin real X0, T 0, V ;

real procedure X ; X := X0+V ∗(time−T 0);
procedure newV (V new); real V new;

begin X0 := X ; T 0 := time; V := V new end;
Car behaviour: ; hold(<travel time>);

end of Car;
process Police;
begin ; inspect <process> when Car do

if X <is within city> and V >50 then

begin newV (50); <give fine> end;
end of Police;
main program: <initialise>; hold(<simulation period>)

end of simulation model;

Thus, the “block prefix” of Simula I is now an ordinary class declared within
the new language, and the special purpose activity declarator is replaced by
process class.

We chose to introduce a special set of operators for references, in order to
make it clear that the item in question is a reference, not (the contents of) the
referenced object. The resume operator is a basic coroutine call, defined for the
whole language.

Notice that the class SIMULATION is completely self-contained. If some
necessary initializing operations were added, it could be separately compiled
and then used repeatedly in later programs. In actual fact a somewhat more
elaborate class is predefined in Simula 67, providing an application language for
simulation modelling. That class is itself prefixed by one containing mechanisms
for the management of circular lists.

It is fair to say that Simula 67 invites to bottom up program design, especially
through the possibility of separate compilation of classes. As a last minute
extension, however, we introduced a top down oriented mechanism through a
concept of “virtual procedures”.

In general attribute identifiers may be redeclared in subclasses, as is the case
of inner blocks. The identity of an attribute is determined by the prefix level of
the accessing occurrence, or, if the access is remote, by the class qualifying the
object reference in question. In this way any ambiguity of identifier binding is
resolved textually, i.e at compile time; we call it static binding.

On the other hand, if a procedure P is specified as virtual in a class C

the binding scheme is semi-dynamic. Any call for P occurring in C or in any
subclass of C will bind to that declaration of P which occurs at the innermost
prefix level of the actual object containing such a declaration (and similarly for
remote accesses). Thus, the body of the procedure P may, at the prefix level of
C, be postponed to occur in any subclass of C. It may even be replaced by more
appropriate ones in further subclasses.

This binding scheme is dynamic in the sense that it depends on the class
membership of the actual object. But there is nevertheless a degree of compiler
control; the access can be implemented as indirect through a table produced by
the compiler for C and for each of its subclasses.

As a concrete example the “fine giving” operation of the above example could
be formalised as a virtual procedure, as follows: Redefine the head of the prefixed
block as a subclass RoadTraffic of SIMULATION . In addition to the classes
Car and Police declarations introduce the following specification:

virtual procedure Fine(cr); ref(Car)cr;

If appropriate the RoadTraffic class may be separately compiled. Using that
class as a block prefix at some later time, a suitable fining procedure can be
defined in that block head.

There is an alternative more implementation oriented view of virtual pro-
cedures. As mentioned in connection with Simula I, deletion of objects would
have to be implicit (in Simula 67 by garbage collector alone). But then there is a
danger of flooding the memory with useless data, especially if there are implicit
pointers between block instances. In Algol 60 there must be a pointer from a
procedure activation back to its caller in order to implement procedure paramet-
ers and parameters “called by name”. Such pointers from objects back to their
generating block instance would have been destructive. So, it was decided that
parameters to objects must be called by “value” (including object references).
The absence of procedure parameters, however, was felt to be a nuisance. For-
tunately the virtual procedure mechanism provided a solution to the dilemma:
a virtual procedure can be seen as a parameter, where the actual parameter
is a procedure residing safely within the object itself, at an appropriate prefix
level. There is the additional advantage that the procedure has direct access to
attributes of the object containing it.

Similar considerations led to forbidding class prefixing across block levels.
Fortunately this would not prevent the use of separately compiled, “external”
classes. Since there is no reference to nonlocal quantities in such a class, it can
be called in as an external one at any block level of a user program.

4 Language Finalisation and Distribution

A couple of weeks after the IFIP Conference a private “Simula Common Base
Conference” was organised, attended by several interested persons. The objective
was to agree on the definition of a common core language. We made a proposal to
the CBC to extend the language by “class-like” types giving rise to permanently
named objects, directly accessed, thus extending the Algol variable concept. The
proposal was prudently voted down, as not sufficiently worked through. However,
a Pascal-like while statement was added, and the virtual mechanism was slightly
revised.

A “Simula Standards Group”, SSG, was established, to consist of repres-
entatives from the NCC and various implementation groups. 5 compilers were
implemented initially. It was decided that the NCC would propose mechanisms
for text handling, I/O, and file handling. Our good colleague Bjørn Myhrhaug
of the NCC gave three alternatives for text handling and I/O. The ones chosen
by the SSG would have required class-like types in order to be definable within
the Common Base.

The class concept as it was formulated originally, was too permissive for
the purpose of developing large systems. There was no means of enforcing a
programming discipline protecting local class invariants (such as those expressed
verbally for the Simulation class example). This was pointed out by Jacob Palme
of the Swedish defence research institute. He proposed hiding mechanisms for

protecting variable attributes from unauthorised updating. The proposal was
approved by the SSG as the last addition ever to the language. The authors toyed
with the idea of class-like types for some time, but it was never implemented.

The first compilers were operative already in 1969, three for Control Data
computers. Then came implementations for UNIVAC and IBM machines. The
general distribution of the compilers was, however, greatly hampered by the
high prices asked for the compilers by the NCC, very unwisely enforced by the
NTNF (Norwegian Council for Scientific and Technical Research) stating that
programming languages only had a 3-5 years lifetime and thus had to provide
profits within this time span. However, a nice compiler for the DEC 10 system,
implemented by a Swedish team in the early 1970’s, contributed considerably
to the spreading of the language. Lectures by OJD at NATO Summer Schools,
as well as a chapter in [9] must have made the new concepts better known in
academic circles.

The most important new concept of Simula 67 is surely the idea of data
structures with associated operators (and with or without own actions), called
objects. There is an important difference, except in trivial cases, between

– the inside view of an object, understood in terms of local variables, possibly
initialising operations establishing an invariant, and implemented procedures
operating on the variables maintaining the invariant, and

– the outside view, as presented by the remotely accessible procedures, includ-
ing some generating mechanism, dealing with more “abstract” entities.

This difference, as indicated by the Car example in Simula I, and the associated
comments, underlies much of our program designs from an early time on,
although not usually conscious and certainly not explicitly formulated. (There
is e.g an intended invariant of any Car object vaguely stating that its current
position X is the right one in view of the past history of the object.)

It was Tony Hoare who finally expressed mathematically the relationship of
the two views in terms of an “abstraction function”, see [20]. He also expressed
requirements for the concrete operations to correctly represent the corresponding
abstract ones. Clearly, in order to enforce the use of abstract object views, read
access to variable attributes would also have to be prevented.

5 Cultural Impact

The main impact of Simula 67 has turned out to be the very wide acceptance
of many of its basic concepts: objects, but usually without own actions, classes,
inheritance, and virtuals, often the default or only way of binding “methods”,
(as well as pointers and dynamic object generation).

There is universal use of the term “object orientation”, OO. Although
no standard definition exists, some or all of the above ideas enter into the
OO paradigm of system development. There is a large flora of OO languages
around for programming and system specification. Conferences on the theory
and practice of OO are held regularly. The importance of the OO paradigm

today is such that one must assume something similar would have come about
also without the Simula effort. The fact remains, however, that the OO principle
was introduced in the mid 60’s through these languages.

Simula 67 had an immediate success as a simulation language, and was,
for instance extensively used in the design of VLSI chips, e.g. at INTEL. As a
general programming language, its impact was enhanced by lectures at NATO
Summer Schools given by OJD, materialized as a chapter in a book on structured
programming, [9]. The latter has influenced research on the use of abstract data
types, e.g., the CLU language, [29], as well as research on monitors and operating
system design, [21].

A major new impact area opened with the introduction of workstations
and personal computers. Alan Kay and his team at Xerox PARC developed
Smalltalk, [15], an interactive language building upon Simula’s objects, classes
and inheritance. It is oriented towards organising the cooperation between a user
and her/his personal computer.

An important step was the integration of OO with a graphical user interfaces,
leading the way to the Macintosh Operating System, and then to Windows.

In the larger workstation field, Lisp was (and in some places still is) an
important language, spawning dialects such as MACLISP, [16], at MIT, and
InterLisp at Xerox PARC. Both got OO facilities, MACLISP through ZetaLisp
introducing also multiple inheritance, [2], and InterLisp through LOOPS (Lisp
Object-Oriented Programming System). The object-oriented component of the
merged effort, CommonLisp, is called CLOS (Common Lisp Object System),
[24].

With the general acceptance of object-orientation, object-oriented databases
started to appear in the 1980’s. The demand for software reuse also pushed OO
tools, and in the 1990’s OO tools for system design and development became
dominant in that field. UML (Unified Modeling Language), [1], is very much
used, and CORBA (Common Object Request Broker Architecture), is a widely
accepted tool for interfacing OO systems. The Microsoft Component Object
Model, COM, [27], is an important common basis for programming languages
such as C♯, as well as other tools.

A large number of OO programming languages have appeared. We list below
some of the more interesting or better known languages, in addition to those
mentioned above.

– BETA is a compilable language built around a single abstraction mechanism,
that of patterns, which can be specialised to classes, singular objects, types,
as well as procedures. It was developed from the later 1970’s by KN and
colleagues in Denmark, [25], [26].

– Bjarne Stroustrup extended the Unix-related language C with several
Simula-inspired mechanisms. The language, called C++, has been much used
and has contributed importantly to the dissemination of the OO ideas, [33].
Since C is fairly close to machine code, security aspects are not the best. As
a result, complex systems may be difficult to implement correctly. C++ has
been revised and extended, e.g. by multiple inheritance.

– Eiffel, [28], is an OO programming language designed by Bertrand Meyer in
the 1980’s, well known and quite widely used. It has pre- and post-conditions
and invariants.

– SELF, [34], is an OO language exploring and using object cloning instead of
object generation from a class declaration.

– JAVA, [22], is a recent Simula-, Beta-, and C++-inspired language, owing
much of its popularity to its integration with the Internet. Its syntax is
unfortunately rather close to that of C++ and thus C (but with secure
pointers). It contains Beta-like singular objects and nested classes, but not
general block structure. Parallel, “multi-threaded”, execution is introduced,
but outside compiler control. As a result, much of the programming security
otherwise inherent in the language is lost. The synchronisation mechanisms
invite to inefficient programming and do not facilitate good control of process
sequencing, see [14].

The authors believed that the use of class declarations for the definition of
“application languages” as natural extensions of a basic one would be of special
importance in practice. However, although various kinds of packages or modules
are defined for many languages, they are not consequences of a general class
declaration as in Simula 67.

The coroutine-like sequencing of Simula has not caught on as a general
purpose programming tool. A natural development, however, would have been
objects as concurrent processes, e.g. as in COM.

One may fairly ask how it could happen that a team of two working in the
periphery of Europe could hit on programming principles of lasting importance.
No doubt a bit of good luck was involved. We were designing a language for
simulation modelling, and such models are most easily conceived of in terms of
cooperating objects. Our approach, however, was general enough to be applicable
to many aspects of system development.

KN oriented his activities for some years to trade union work, as well
as system development and description, see [23]. In 1976 he turned back to
programming language design, see BETA above. In [32] he introduced new
constructs for OO layered distributed systems.

OJD has been professor of Informatics at Oslo University for the period 1968–
1999, developing curricula including OO programming. He has explored the
concept of time sequences to reason about concurrent systems, [10], [11]. In [13]
he applies techniques, such as Hoare logic and Guttag-Horning axiomatisation
of types and subtypes, [31], to the specification and proof of programs, including
OO ones. See also [12].

Of the Simula authors especially KN has been consistently promoting the
OO paradigm for system development.

Acknowledgments

The author is greatly indebted to Kristen Nygaard for helping to explain the
impact of object orientation in various areas of programming and system work.
Also Olaf Owe has contributed.

References

1. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

2. H. Cannon: Flavors, A Non-Hierarchical Approach to Object-Oriented Pro-
gramming. Draft 1982.

3. O.-J. Dahl: The Simula Storage Allocation Scheme. NCC Doc. 162, 1963.
4. O.-J. Dahl, K. Nygaard: SIMULA – A language for programming and de-

scription of discrete event systems. Introduction and user’s manual. NCC
Publ. no. 11, 1965.

5. O.-J. Dahl, K. Nygaard: SIMULA – an ALGOL-based Simulation Language.
CACM 9(9), 671–678, 1966.

6. O.-J. Dahl: Discrete Event Simulation Languages. In F. Genuys, ed.: Program-
ming Languages. Academic Press, pp 349–394, 1968.

7. O.-J. Dahl, K. Nygaard: Class and Subclass Declarations. In J. Buxton,
ed.: Simulation Programming Languages. Proceedings from the IFIP Working
Conference in Oslo, May 1967. North Holland, 1968.

8. O.-J. Dahl, B. Myhrhaug, K. Nygaard: SIMULA 67 Common Base Language.
Norwegian Computing Center 1968.

9. O.-J. Dahl, C.A.R. Hoare: Hierarchical Program Structures. In O.-J. Dahl,
E.W. Dijkstra, C.A.R. Hoare: Structured Programming. Academic Press 1972,
pp. 175–220.

10. O.-J. Dahl: Can Program Proving be Made Practical? In M. Amirchahy,
D. Neel: Les Fondements de la Programmation. IRIA 1977, pp. 57–114.

11. O.-J. Dahl: Time Sequences as a Tool for Describing Process Behaviour. In
D. Bjørner, ed.: Abstract Software Specifications, LNCS 86, pp. 273-290.

12. O.-J. Dahl, O. Owe: Formal Development with ABEL. In VDM91, LNCS 552,
pp. 320–363.

13. O.-J. Dahl: Verifiable Programming, Hoare Series, Prentice Hall 1992.
14. O.-J. Dahl: A Note on Monitor Versions. In Proceedings of Symposium in the

Honour of C.A.R. Hoare at his resignation from the University of Oxford.
Oxford University 1999. Also available at www.ifi.uio.no/~olejohan. (De-
partment of Informatics, University of Oslo).

15. A. Goldberg, D. Robson: Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1984.

16. B.S. Greenberg: The Multics MACLISP Compiler. The Basic Hackery – a
Tutorial. MIT Press 1977, 1988, 1996.

17. C.A.R. Hoare: Record Handling. In ALGOL Bulletin no. 21. 1965.
18. C.A.R. Hoare: Further Thoughts on Record Handling. In ALGOL Bulletin

no. 23. 1966.
19. C.A.R. Hoare: Record Handling. In F. Genuys, ed.: Programming Languages.

Academic Press, pp 291–346, 1968.

20. C.A.R. Hoare: Proof of the Correctness of Data Representations. Acta Inform-
atica, vol. 1, 1972.

21. C.A.R. Hoare: Monitors: an Operating System Structuring Concept.
Comm. ACM 17(10)(1974), pp. 549-557.

22. J. Gosling, Bill Joy, G. Steele: The Java Language Specification. Java(tm)
Series, Addison-Wesley 1989.

23. P. H̊andlykken, K. Nygaard: The DELTA System Description Language:
Motivation, Main Concepts and Experience from use. In: Software Engineering
Environments (ed. H. Hnke), GMD, North-Holland, 1981.

24. S.E. Keene: Object-Oriented Programming in COMMON LISP-A Program-
mer’s Guide to CLOS. Addison-Wesley 1989.

25. B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Abstraction
Mechanisms in the BETA Programming Language. Proceedings of the Tenth
ACM Symposium on Principles of Programming Languages. Austin, Texas,
1983.

26. O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Object Oriented Programming
in the BETA Programming Language. Addison-Wesley/ACM Press 1993.

27. R.C. Martin: Design Principles and Design Patterns. Microsoft, www.

objectmentor.com.
28. B. Meyer: Eiffel: The Language. Prentice Hall 1992.
29. B. Liskov, A. Snyder, R. Atkinson, C. Schaffert: Abstraction Mechanisms in

CLU. Comm. ACM 20:8 (1977), PP. 564-576.
30. K. Nygaard, O.-J. Dahl: SIMULA Session. In R. Wexelblatt, ed.: History of

Programming Languages. ACM 1981.
31. O. Owe, O.-J. Dahl: Generator Induction in Order Sorted Algebras. Formal

Aspects of Computing (1991), 3:2–20.
32. K. Nygaard: GOODS to Appear on the Stage. Proceedings of the 11th European

Conference on Object-Oriented Programming. Springer 1997
33. B. Stroustrup: The C++ Programming Language. Addison-Wesley 1986.
34. D. Ungar, R.B. Smith: SELF: The Power of Simplicity. In SIGPLAN Notices

22(12), 1987.
35. A. Wang, O.-J. Dahl: Coroutine Sequencing in a Block Structured Environ-

ment. In BIT 11 425–449, 1971.

