
Nordic Journal of Computing

ON INTRODUCING HIGHER ORDER FUNCTIONS IN
ABEL

BJØRN KRISTOFFERSEN
Department of Mathemathics and Informatics

Telemark College, Norway
Bjorn.Kristoffersen@hit.no

OLE-JOHAN DAHL
Department of Informatics
University of Oslo, Norway
olejohan@ifi.uio.no

Abstract. We discuss how the 1’st order specification and programming language
ABEL could be extended with higher order functions. Several issues arise, related
to subtyping, parameterization, strictness of generators and defined functions, and
to the choice between lambda expressions and currying. The paper can be regarded
as an exercise in language design: how to introduce higher order functions under the
restrictions enforced by (1’st order) ABEL. A technical result is a soundness proof
for covariant subtype replacement, useful when implementing data types under
volume constraints imposed by computer hardware.

CR Classification: D.1.1, D.2.1, D.2.4, D.3.3, F.3.1, F.3.3.

Key words: Algebraic specification, higher order functions, term rewriting, gen-
erator induction, parameterized modules, subtypes, strictness.

1. Introduction

The specification and programming language ABEL (Abstraction Building Exper-
imental Language) has been under development at the University of Oslo since the
late 70’s [4, 12, 3]. The applicative kernel of ABEL is a typed 1’st order language
with subtypes and partial functions. Specifications may consist of typed 1’st order
axioms (with loose semantics); however, we are here concerned with the so called
TGI fragment of ABEL, in which types and functions are defined inductively over
given sets of generator functions. TGI stands for terminating generator induction.
Partial functions may be defined using an explicit error indicator.

A companion paper [5] is a prerequisite for a thorough understanding of what is
to follow. It explains the notion of TGI, as well as some applications of subtypes.
The TGI fragment of ABEL can be seen as a ML-like, 1’st order programming
language. With this paper we attempt to extend the TGI fragment with higher
order functions.

By a functional language we shall mean an applicative language where functions
are “values”; and may as such be bound to variables, used as arguments and re-
turned as results from (other) functions. Then function profiles can be taken as
bona fide types, although the associated value sets are not in general definable in-
ductively. It makes sense to have functional imperative languages, and even higher
order procedures, but this is outside the scope of the paper.

The most important motivation for programming with higher order functions
is reuse of code. Certain functionals, such as map, filter and fold, are to the
functional programmer what control structures are in imperative languages. Since

Received December 1995. Revised March 1998.

2 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

those functionals can be defined within the language, it is easy to introduce new
“control structures”, e.g. map2 for distributing a binary function over two lists
instead of one. The usefulness of higher order functions is further increased when
combined with some kind of “polymorphism”. Whether higher order constructs
are useful also in formal specification and mechanical theorem proving, is more
uncertain. Some restrictions on the use of higher order functions will be described.
Our goal is to lift the methodology of terminating generator induction in ABEL to
a higher order setting, and the following can be read as an attempt to identify and
motivate a certain style of higher order specification.

2. Higher order TGI

Currying is one way to introduce higher order functions. Extending pure combina-
tory logic [8] with currying and pattern matching gives a relatively simple model
of functional languages, which can be implemented by term rewriting. In contrast
to lambda calculus based approaches [1, 2], combinators do not need the complex-
ity related to substitution and local variables. Higher order generator inductive
specifications are then obtained as follows:

◦ A type constructor → is introduced for writing functional types.

Since the codomain of a function can now be a function space, currying follows.
Whereas 1’st order types are specified through a set of generator functions, functions
are not (in general) finitely generated. Thus, there is no induction principle for
functional types.

The TGI style of function definition requires recursion to be “guarded” by in-
duction on some argument. Thus, for higher order functions recursive definitions
will require at least one 1’st order argument. Direct nonrecursive function defini-
tion is within the 1’st order TGI framework. The generalization to higher order is
immediate. No domain restriction is necessary in the nonrecursive case.

The following is an extract from a higher order TGI specification:

func map : (Nat → Nat)→ Seq{Nat} → Seq{Nat}
def map F q == case q of ε⇒ ε | x a q′ ⇒ (F x) a (map F q′) fo
func incr : Seq{Nat} → Seq{Nat}
def incr == map (add 1)

where
func add : Nat → Nat → Nat

and sequence types are defined by a parameterized type module:
type Seq{T} ==
module const ε : Seq – empty sequence

func ˆaˆ: T × Seq → Seq – append left
1-1 genbas ε, ˆaˆ
func ˆ`ˆ: Seq × T → Seq – append right
def q ` t == case q of ε→ t a ε | t′ a q′ → t′ a (q′ ` t) fo
... ...

endmodule

Remark 1. The generator basis {ε, a} for sequences is the natural choice in the
present context focusing on ABEL as a programming language. In the more tra-
ditional setting of ABEL used as a language for specifying, documenting and rea-
soning about imperative programs the basis {ε, `} is more appropriate, see [3],
[5].

HIGHER ORDER FUNCTIONS IN ABEL 3

Remark 2. In the higher order setting formal types such as T above can be instan-
tiated to functional types. We nevertheless shall regard formal types as 1’st order,
and module bodies will be type checked accordingly. The consequent language
restriction will be unimportant in practice.

Function applications are written by juxtaposition, e1 e2. Thus, the traditional 1’st
order notation, f(e1, . . . , en), is a special case when the argument is a tuple (i.e. the
domain is a Cartesian product). As usual, application is left associative, whereas the
type constructor → is right associative. Every function, be it a declared function
or a function expression, takes a single argument (possibly a nonempty tuple);
however, if the function value is again a function, another argument may be added,
and so on recursively. Whereas 1’st order constants are considered to be functions
of zero arity in standard ABEL, that is not the case in the present context.

Definition 1.

(1) The depth of a non-functional type is equal to 0. The depth of a functional
type is one greater than that of its codomain part.

(2) The c-arity of a function is equal to the depth of its profile.

(3) An application of type T is said to be complete if T is non-functional.

(4) The type of a complete application of a function is called the c-codomain of
the function.

Thus, the c-arity of map is equal to 2, its c-codomain is Seq{Nat} and the left hand
side of its definition is a complete application. Observe that e.g. Seq{Nat→ Nat}
is non-functional (albeit not 1’st order).

The definition of a function f has the following general format:

def f x1 . . . xn == e

The left hand side has the form of an application of f , possibly incomplete, where
the arguments are distinct variables or variable tuples, implicitly typed as required
by the type (“profile”) of f , and the right hand side is an expression in x1, . . . , xn.
We require that recursive applications in the right hand side are “guarded” by
generator induction on the argument(s) in question.

In a language allowing lambda expressions, the above could be taken as a short-
hand for:

let rec f == λx1. . . . λxn.e

The function values we allow are those obtained from incomplete applications of
named functions. This corresponds to restricting lambda expressions in right hand
sides to the outermost level. Remaining occurrences of lambda expressions in typical
functional specifications tend to be rather trivial, e.g. functions for swapping the
components of a pair in order to compose two given functions. We have found that
specifications become more readable by insisting that such operations are written
as (incomplete) applications of named combinators. Observe also that naming is a
prerequisite for the reuse of code.

4 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

2.1 Term rewriting

The lambda restriction has the advantage that specifications can be assigned a
semantics by translation into so called curryfied term rewriting systems (CTRS),
as defined by van Bakel and Fernández [13], without first doing lambda lifting [9].

As a first step in the translation from a TGI specification to a CTRS, function
definitions are augmented with extra formal arguments so that left hand sides are
complete applications. Case expressions in the right hand side are then removed by
writing a function definition as a set of equations, e.g. for map above (disregarding
the convention that case constructs are strict in the discriminand, see [5]):

E1: map F ε == ε
E2: map F (x a q′) == (F x) a (map F q′)

A pattern p is a linear expression built from generators and variables. We insist
that non-variable patterns are complete applications g p1 . . . pn. In particular, a
function variable cannot be the leftmost-innermost term of a compound pattern.
Left hand sides of TGI equations are easily seen to be built from patterns and a
single non-generator function symbol.

The next step is to translate TGI equations into CTRS rules (oriented from
left to right). For this we need to replace applications of function expressions by
applications on the form (fn e1 . . . en), for fn a function symbol of arity n.

Every CTRS has a special binary function symbol ap2 (pronounced “apply”).
Furthermore, for f a function symbol of c-arity n, n+ 1 function symbols f0, . . . , fn

are introduced in the corresponding CTRS. The relation between these functions
are defined by a set of curry rules, one for every i < n:

(ap2 (f i x1 . . . xi) xi+1) → (f i+1 x1 . . . xi xi+1)

The translation e of an expression e is defined inductively, where e↓ denotes the
normal form of e with respect to the curry rules:

x = x

f = f0

(e1 e2) = (ap2 e1 e2) ↓

Applying the expression translation to the TGI equations gives a set of proper
rewrite rules. Observe that we may need to use ap2 with a number of distinct
types, all on the general form (S → T)→ S → T . However, given that all type
dependent function overloading has been resolved prior to the translation to CTRS,
the overloading of ap2 is irrelevant.

Lemma 1. Let R be a CTRS obtained from a TGI specification as described above.
Then there are no occurrences of ap2 in the left hand side of proper rules in R.

Proof. Consider a function definition, where the right hand side e does not
contain case expressions:

def f x1 . . . xn == e

HIGHER ORDER FUNCTIONS IN ABEL 5

Since the left hand side is complete, the c-arity of f is n. Hence the result of
translating the left hand side is (ap2 . . . (ap2 f0 x1) . . . xn) ↓= (fn x1 . . . xn).

If the right hand side contains a case expression, the left hand sides of the cor-
responding TGI equations will contain patterns. But since non-variable patterns
are always complete applications, the translation of a compound pattern is the
following:

(. . . (g p1) . . . pn) = (ap2 . . . (ap2 g0 p1) pn) ↓

= (gn p1 . . . pn)

Arguing by induction on expressions, each pi for 1 ≤ i ≤ n can be assumed to be
free for occurrences of ap2. 2

The proper rules corresponding to a given function f are from the above seen to
be associated with fn, where n is the c-arity of f . For map we obtain:

R1: map2 F ε → ε
R2: map2 F (x a q′)→ (ap2 F x) a (map2 F q′)

Remark 3. Given a suitable notion of matching, TGI equations could be oriented
and used directly as rewrite rules, without going through the final translation into
a CTRS. This would give a deeper term structure, and probably result in a loss of
efficiency. We further find that CTRSs provide a simple explanation of currying.
Observe also that the representation of TGI definitions as CTRS rules can be easily
hidden from the user by a “pretty-printer” facility.

2.2 Termination

Allowing function values as arguments to generators makes it possible to model
”infinite” data structures, see the type PSet in section 4.3. Unfortunately, such
generators also introduce the possibility of defining non-terminating functions sat-
isfying standard 1’st order termination criteria:

func g1 : T
func g2 : (T → T)→ T
genbas g1, g2
func f : T → T
def f x == case x of g1 ⇒ g1 | g2 F ⇒ F (g2 F) fo

There is no recursive application in the definition of f , still we have the following
infinite computation (in the corresponding CTRS):

f1 (g21 f0) ⇒ ap2 f0 (g21 f0) ⇒ f1 (g21 f0) ⇒ . . .

In the same manner, using the function under definition as argument in a function
application can sometimes be useful, but it makes it much harder to find useful
termination criteria. The following function computes the pre-order sequence of
nodes in an ordered tree, where flat is the usual functional for flattening a list of
lists into a single list:

func node : T → Seq{Tree{T}} → Tree{T}
genbas node
func pre : Tree{T} → Seq{T}
def pre (node x q) == x a (flat (map pre q))

6 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

From a TGI point of view, the problem with pre is that we have no syntactic control
over the arguments in the recursive applications (the complete applications of pre
will be built inside map). Note, however, that pre can easily be rewritten in TGI
style using two mutually recursive, 1’st order functions.

If generators are not allowed to take functional arguments (viewing formal types
in parameterized modules as 1’st order types), and the depth of every recursive
application is equal to or greater than the depth of the corresponding left hand
side, it can be proved that currying does not have any effect on termination, and
so 1’st order termination checks can be lifted to higher order [10].

2.3 Strictness control

In 1’st order ABEL, the empty type � is considered to be a subtype of every
type. The special symbol ⊥ is an expression of type �, thus legal in any argument
position. It has no value and is “ill-defined” in that sense. Within the TGI fragment
of ABEL ⊥ can be seen as a simulation of an infinite computation.

ABEL adopts a partly non-strict semantics for defined functions whereas gen-
erators are strict. Non-strictness is motivated by the use of term rewriting. For
instance, the definition:

func fst : T × U → T
def fst(x, y) == x

would allow any application fst(e1, e2) to be rewritten to e1, even if e2 is an ill-
defined expression. On the other hand, expressions in generators are considered
evaluation results and, as such, cannot have ill-defined components. Generator
strictness can be naively implemented by adding rules on the form (g ⊥)→⊥.
Adding currying to this mixed strictness strategy in a clean way is a challenge.

As a first step we let � remain a subtype of all types, including functional ones.
Let f : S → T be a function ill-defined on the whole of S. Then the strong (i.e. non-
strict) equality ⊥ x == f x holds for every x : S. In spite of this, f and ⊥ should
not be considered equal; the former is a value, whereas the latter is not. Although
any application of f is ill-defined, the function f is not itself ill-defined.

Remark 4. Assume that we in the higher order extension of ABEL decided that
� were not a subtype of function types. If ⊥ was used in a type T position in a
module M{T}, module instances where T is replaced by function types would then
not be well-typed. To disallow such instantiations, we would be forced to let T range
only over 1’st order types. Since we also wish to allow types like Seq{Nat→ Nat}
two kinds of formal types would be needed: those ranging over all types and those
ranging only over 1’st order types. We do not wish to complicate the type structure
in this manner.

As already mentioned, the standard notation for higher order function application
makes it necessary to look at an ABEL notation such as f(x, y) as an application of
f to a tuple. Furthermore, a tuple is an application of the generator of a Cartesian
product type. Since generators are strict, we have to revise the notion that e.g. the
function fst above can be strict in x and non-strict in y. This does lead to a certain
overhead for strongly correct term rewriting, cf. [5], however, we may retain the
notion of mixed strictness for curried functions. For instance, the function:

func fstc : T → U → T
def fstc x y == x

HIGHER ORDER FUNCTIONS IN ABEL 7

should be strict in x, but non-strict in y. Thereby the Curry isomorphism is vio-
lated:

T × U → V 6≡ T → U → V

But, on the other hand, we are able in this way to exploit a notational difference
for a useful semantic purpose.

3. Module parameterization and higher order functions

“Functions as first-class citizens” might serve as an useful guide line to the design of
programming languages. For formal specification languages, however, one could ar-
gue against this strive for “equal rights for all values” on several grounds. First and
foremost, formal reasoning does not always generalize to higher types. J. Gougen
[7] refers to the undecidability of higher order unification as a prime example.

The fact that functions are not in general finitely generated, implies that certain
important functions, such as the equality relation are not generally computable
over function spaces. 1’st order ABEL specifies that equality exists for all types,
including formal ones. For that reason we insist that higher order equality should
be part of the extended language, although not of the constructive fragment. See
also section 5.

Unrestricted rights for function values also make subtyping rules for parameter-
ized types more complex. We return to subtyping in section 4.

3.1 “Formal” functions

In a certain sense it is possible to express higher order specifications in 1’st order
ABEL. Using loose axiomatic function specifications in a module parameterized by
types, implicit functional arguments can be simulated through a kind of module
composition and instantiation. Consider the sorting of sequences of an unspecified
element type T . This type must be ordered by some binary predicate ˆ≤ˆ, as
expressed by the following ABEL module:

property SortOrd{T} ==
module

func ˆ≤ˆ : T × T → Bool
axm x, y, z : T•

x ≤ y ∨ y ≤ x
x ≤ y ≤ z ⇒ x ≤ z

endmodule

The axioms do not define a unique function. The purpose of the SortOrd module
is rather to state minimal requirements on some formal type in a parameterized
module, such as the following module defining a sorting function:

funcs SortSeq{T} assuming SortOrd{T} ==
module

func insert : Seq{T} × T → Seq{T}
def insert(q, x) == case q of ε ⇒ x a ε | y a q′ ⇒

if x ≤ y then x a q else y a insert(q′, x) fi fo
func sort : Seq{T} → Seq{T}
def sort(q) == case q of ε ⇒ ε | x a q′ ⇒ insert(sort(q′), x) fo

endmodule

8 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

The SortSeq module can be instantiated by replacing the formal type T by some
actual type, say Int. The actual type must fulfill the requirements on the formal
type T ; i.e. there must exist a binary predicate satisfying the axioms given in
module SortOrd:

func ˆ≤ˆ : Int× Int→ Bool
lma x, y, z : Int •

x ≤ y ∨ y ≤ x
x ≤ y ≤ z ⇒ x ≤ z

The actualization of ˆ≤ˆ is a kind of static parameter transmission of a functional
value at the module level. ABEL allows for the renaming of loose functions, which
makes them more parameter-like. For that reason they are sometimes called formal
functions.

The operational aspect of the above specification could in a higher order language
be encoded by making the formal function ˆ≤ˆ an argument (in the usual sense)
to the sort function:

func sort : (T × T → Bool)→ Seq{T} → Seq{T}
def sort ˆ≤ˆ q == . . .

The following should be observed:

(1) The requirements on the ordering relation are lost in the higher order encod-
ing of the sort function.

(2) A formal function as above can be an implicit argument to several functions
at the same time. One could for instance include alternative sorting algo-
rithms in the SortSeq module. They would all be instantiated by one module
expression.

So, the higher order extension of ABEL does not remove the need for formal func-
tions. On the other hand, in many cases we may not wish to restrict a formal
function more than what is required by the profile. To simulate the functional
argument to map using a formal function requires much notational overhead in-
cluding explicit module instantiation and function renaming. J. Gougen [7] argues
strongly for the simulation of higher order functions by parameterized modules, and
proposes techniques to reduce the notational overhead involved in actualization of
formal functions (although he does not use our terminology). To some extent he
succeeds, but only at the expense of a rather complicated set of rules for func-
tion renaming and so called “default views”. Furthermore, such simulation is only
possible to the extent that the set of actual higher order arguments is decidable
statically.

Although formal reasoning does not always generalize to higher order, the prac-
tical significance of this varies from one specification language to another. For
example, equational reasoning in the TGI fragment of ABEL is not based on com-
pletion procedures. Hence, the undecidability of higher order unification need not
be a problem. Moreover, unification is known to be decidable for the class of higher
order patterns [11]. The left hand sides of TGI rewrite rules lie within this class.

Higher order functions invite users to build specifications by “putting functions
together”. In a 1’st order language, every functional composition needs a name,
which leads to another style of specification. According to Gougen parameterization
is useful for specification “in the large”, whereas higher order functions are used
as a structuring mechanism “in the small”. We agree, but maintain that both are
needed, at least for purposes of programming.

HIGHER ORDER FUNCTIONS IN ABEL 9

3.2 Polymorphism versus parameterized modules

Higher order functions are particularly useful if allowed to be used with different
types, such as in ML style polymorphism. We feel, however, that explicit function
typing is generally an important part of system design and specification docu-
mentation. Furthermore ML style type inference does not go well together with
subtyping. It turns out that parameterized modules offer the same expressiveness
in a way better adapted to ABEL.

The most frequent use of higher order functions is to “lift” operations from some
type T to a compound data structure containing T values. The map functional is
a prime example. Assume access to a parameterized module defining map, as in
section 2, and consider a given application (map f). From the type of f , the type
checker will know how to instantiate the module. Thus, there is no notational over-
head caused by explicit module instantiation involved in obtaining polymorphism:

◦ Instantiations of parameterized modules follow from the types of correspond-
ing function applications, and can hence be implicit. There is no need for
additional syntactic sugar.

◦ Parameterized modules are as expressive as polymorphism. For every func-
tion f defined in a polymorphic program P , the number of distinct types
that are assigned to occurrences of f in computations of P is finite and can
be computed statically.

4. Subtyping in higher types

For every (1’st order) type defined inductively over a one-to-one generator basis, the
value set can be divided into disjoint subsets by introducing a list of basic subtypes,
and using those subtypes as codomains of the generators. For types with a many-
to-one generator basis, a proof of disjointness is required. Intermediate subtypes
arise from taking unions of basic types. This hierarchy, or type family, becomes a
complete lattice by adding the empty type � as minimal element. Such syntactic
subtypes are motivated and described in [5].

1’st order ABEL also supports semantic subtypes, for which the value set of a
given type may be restricted by some predicate and the set of associated functions
may be extended and partly redefined, typically:

type T{. . .} == x : U whereP
module 〈function definitions/redefinitions〉 endmodule

where U is a type expression in defined types and the parameters to T , and P is a
predicate in x and functions associated with U . Our task is to extend the subtype
relation to higher order. We shall, however, still insist that U is non-functional, i.e.
its main operator is a defined 1’st order type.

4.1 Covariance versus contravariance

The first question to be answered is the following: When is one function type, say
T ′ → U ′, a subtype of another, T → U? The codomain should clearly be covariant:
U ′ � U .

The subtype relation on 1’st order types is designed so that values of a type T
may be used with type U for T � U , without explicit coercion. We say that 1’st
order types are coercion-free upwards. To maintain this property in higher order,
we need the following contravariant subtype rule:

10 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

T � T ′ , U ′ � U
T ′ → U ′ � T → U

The rule is called contravariant since the direction of the subtype relation on
function types is reversed compared to the relation on the domains. Contravariance
renders typing sound in the sense that well-typed expressions in total functions are
well-defined.

Lemma 2. The contravariant subtyping rule respects coercion-freedom upwards.

Proof. Let f : T → U be a formal parameter and f ′ : T ′ → U ′ a function. Given
T � T ′ and U ′ � U , f ′ is a legal actual argument for f . For t : T the expression
f ′(t) : U is well-typed. It is well-defined because T � T ′ gives that f ′(t) returns a
value in U ′, and U ′ � U . 2

The following semantic interpretation ensures that subtypes correspond to subsets
on value sets, given a contravariant subtype rule:

Definition 2. A function type T → U denotes the set of functions f , which given
a value v in T , either is ill-defined or returns a value in U . The behaviour of f is
undefined for values outside T .

Functions will never be applied outside their domains in well-typed expressions,
so such applications need not be assigned any meaning. The term “undefined”
should thus be understood as “unspecified” rather than “ill-defined”.

The contravariant subtype rule is needed to obtain coercion-freedom upwards.
This does not mean that contravariance is always the natural choice; at first it
looks counter intuitive for most people. Consider:

type Mapping{X,Y } ==
module

func init : Mapping
func ˆ[ˆ 7→ ˆ] : Mapping ×X × Y →Mapping
genbas init, ˆ[ˆ 7→ ˆ]
func ˆ[ˆ] : Mapping ×X → Y
def M [x] == case M of init ⇒ ⊥ | M ′[x′ 7→y] ⇒

if x′=x then y else M ′[x] fi fo
obsbas ˆ[ˆ]
func dom : Mapping→ Set{X}
def dom(M) == case M of init ⇒ ∅ | M ′[x 7→y] ⇒ add(dom(M ′), x) fo

endmodule

Assume thatM : Mapping{T,U} andM ′ : Mapping{T ′, U} for T � T ′. IfMapping
were contravariant in its first parameter, it would be legal to substitute M ′ for M .
But then dom(M) : Set{T} is unsound.

The encoding of function types by finitely generated mappings is not a true
simulation. The “typing anomaly” depends on the possibility of observing the
range of Mapping values. This cannot be done for function types, so Mapping
is not a counter example to the soundness of contravariance. But the example
does demonstrate a mismatch between contravariance and an intuitive notion of
subtyping.

HIGHER ORDER FUNCTIONS IN ABEL 11

When redefining functions in (semantic) subtypes it is natural, or even necessary,
to restrict the domains.

Consider the subtype BNat = {x : Nat • x ≤Max} of natural numbers bounded
from above by some constantMax. To avoid uncontrolled overflow during run-time,
we should redefine, say addition to explicitly return ⊥ when the result is too large.
The profile for ˆ+ˆ should hence be:

func ˆ+ˆ : BNat×BNat→ BNat

According to the principle of contravariance, this redefinition is not a legal actual
argument for a formal parameter of type Nat×Nat→ Nat.

Redefinitions of functions in subtypes result in a special kind of overloading. The
proper function binding for an application is given by the (minimal) types of the
arguments (and possibly some additional conventions). To replace one type by
another in function profiles can lead to a change in function bindings, and the ef-
fect can consequently be regarded as the replacement of one function by another.
We have already argued that coercion-free substitution of functions must be con-
travariant. But redefinition of functions in subtypes is necessarily covariant. So, the
challenge is to find a safe way to combine covariant redefinition of functions with a
contravariant subtyping rule for function types. We return to this issue in section
5 after having reported some further complications with higher order functions and
subtyping.

4.2 Maximal types and coercion functions

Consider a function with domain T applied to an argument e whose minimal type
Te is related to T in the sense of having a supertype in common with T (and
not syntactically disjoint with T). Then the application (f e) may still result in
a predictable behaviour if the value of e happens to belong to T . Rather than
rejecting the expression as ill-typed, the ABEL type checker can (as one possible
option) insert a coercion on e into the domain of f : e asT . The coercion, also
called a retraction, is a partial function well-defined for the subtype Te u T , and
ill-defined on the remaining part of the hierarchy. For 1’st order type families, it
is sufficient to define one coercion function for each subtype, having as domain the
corresponding maximal type, say T̄ .

ˆasT : T̄ → T

This strategy is no longer sound in higher order. The integers Int can be divided
into three basic subtypes: the strictly positive numbers Pos, the strictly negative
numbers Neg, and the singleton type Zero containing only 0. The hierarchy also
includes intermediate types Nat, NPos and NZro obtained from taking unions of
basic types. Consider a coercion function into, say type Nat→ Pos. The naive
generalization from 1’st order results in the following slightly strange:

func ˆas (Nat→Pos) : (� → Int)→ Nat→ Pos
def F as (Nat→Pos) == asPos ◦ F ◦ asNat

Observe that the expression (F ◦ asNat) inside the function body is ill-typed, since
the domain of F is �! To allow every function of a type related to Int→ Int as
arguments to as (Nat→Pos), however, there seems to be no other choice than to
specify the maximal type �→ Int as the domain.

The solution is to define more than one coercion into a given function subtype.
For Nat→ Pos we shall need the following:

12 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

func ˆas (Nat→Pos) : (Nat→ Int)→ Nat→ Pos
def F as (Nat→Pos) == asPos ◦ F
func ˆas (Nat→Pos) : (Pos→ Int)→ Nat→ Pos
def F as (Nat→Pos) == asPos ◦ F ◦ asPos
func ˆas (Nat→Pos) : (Zero → Int)→ Nat→ Pos
def F as (Nat→Pos) == asPos ◦ F ◦ as Zero

In general we could for a given function type S → T introduce one coercion function
for every supertype of S → T . Some of these are, however, redundant and can safely
be removed.

Definition 3.

(1) A coercion function is redundant if there exist another coercion function with
the same name, the same right hand side (syntactically speaking), and a
larger domain.

(2) A coercion function is also redundant if every (complete) application is ill-
defined.

The overloading of coercion functions is resolved as for ordinary functions: the
type checker will choose the coercion function with a minimal domain (with respect
to subtyping), under the restriction that the coercion application is well typed. Con-
sider a function application f e for f : (Nat→ Pos)→ T and e : Int→ Int. Then
a coercion from the set above must be inserted: f(e as (Nat→ Pos)). The coercion
function with domain Nat→ Int is chosen, since it can safely accept e as argument
and since it has the minimal domain in the coercion set.

Remark 5. If only well typed expressions in total functions were to be considered,
there would be no need for an empty type. In that case a contravariant hierar-
chy would not in general have a unique maximal type. For instance, the subtype
family over Int → Int would in that setting have the maximal types Neg → Int,
Zero → Int and Pos→ Int. However, with the empty type included, such hierar-
chies are lattices as in 1’st order.

4.3 Monotonicity of parameterized types

The general subtype rule for 1’st order parameterized types is:

T ′1 � T1 T
′
n � Tn

U{T ′1, . . . , T
′
n} � U{T1, . . . , Tn}

If generators are allowed to take functional arguments it becomes possible to
represent “infinite” data structures. Unfortunately, this has the consequence of
breaking the general monotonicity rule for parameterized types. A typical example
would be the encoding of sets of T values by predicates.

type PSet{T} ==
module

func mkSet : (T → Bool)→ PSet
1-1 genbas mkSet
func ˆ∈ˆ: T × PSet → Bool
def x ∈ (mkSet F) == F x

endmodule

HIGHER ORDER FUNCTIONS IN ABEL 13

Let f : Int→ Bool and f ′ : Nat→ Bool. Then (mkSet f) represents a set of
integers, whereas (mkSet f ′) represents a set of natural numbers. It seems safe to
replace the former by the latter. However, a function h taking a formal parameter
S of type PSet{Int} can extract the functional component of S and apply it to an
integer. This is exactly what happens in the definition of set membership. In that
case it is unsound to apply h with a value of type PSet{Nat}. The correct subtype
rule for PSet is inferred from the domain of the generator mkSet. Contravariance
gives Int → Bool � Nat → Bool , which implies that PSet{Int} � PSet{Nat}. This
is at best counter intuitive.

Observe that the type of (mkSet f) does not reveal the functional value inside
the term. Contrast this with the standard 1’st order finite sets:

type Set{T} ==
module

func ∅ : Set , add : Set × T → Set
genbas ∅, add
func ˆ∈ˆ : T × Set → Bool
def x∈s == case s of ∅ → false | add(s′, y)→ x=y ∨ x∈s′ fo
obsbas ˆ∈ˆ

endmodule

The Set type is monotonic. The fact that Set{Int → Nat} � Set{Nat → Nat}
follows from contravariance on function types.

These examples, held together with the discussion on termination in section 2.2,
motivate the following restriction: Generators are 1’st order functions (viewing
formal types as 1’st order types). This does not preclude the instantiation of a
formal type as a higher order type.

4.4 Profile completion for higher order functions

In [5] an algorithm for the construction of a “complete” set of profiles for TGI
defined functions is described. Such a profile set forms a covariant family of pro-
files over syntactic subtypes of the function domain, providing opportunities for
strengthened typing of function applications.

The completion procedure for a given function f works by computing the minimal
codomain for every possible domain of f , obtained from the user specified profile
by replacing maximal types with their syntactic subtypes. The procedure can be
implemented by a fixpoint construction starting with � in place of every codomain.
A profile f : T → U is said to be redundant if there exists another profile f : T ′ → U ′

such that T ≺ T ′ and U = U ′ (it can be proved that U � U ′ must hold). Redundant
profiles can be removed from the complete profile set.

In higher order, one must compute minimal c-codomains rather than minimal
codomains, and hence consider all combinations of syntactic subtypes in place of
types not occurring in the c-codomain. Apart from this the procedure is the same
as in 1’st order. For map the completion procedure gives the following profile set,
where NESeq denotes the subtype of non-empty sequences and ESeq the subtype
containing only ε:

func map : (T → U)→ Seq{T} → Seq{U}
(T → U)→ NESeq{T} → NESeq{U}

(T → U)→ ESeq → ESeq
(T → �)→ Seq{T} → �

(T → U)→ � → �

14 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

The last two profiles express strictness in both operands.
Observe that a profile for map where T and U are replaced by actual types having

syntactic subtypes could give a bigger profile set. It is possible to achieve even more
precise typing results by regarding profile sets as ”types”, see [6]. More practical
experience is required to decide how far this kind of type analysis should be pushed.

5. Subtype replacement

In the implementation of 1’st order data types, volume constraints typically have to
be applied. Thus, the implementation of a data type T may consist of the following
two steps, see [3]:

(1) Define a subtype T ′ = {x : T • P (x)}, where P : T → Bool is a restriction on
data volume in some sense. For every function profile f : D→ C depending
on T , a corresponding profile f ′ : D′ → C′ is introduced, where D′ (C′) is
obtained from D (C) by replacing every occurrence of T by T ′. We require
that f ′ v (f as (D′→C′)). Subtype monotonicity gives D′�D and C′�C.
If D′≺D then f ′ may be a redefinition of f taking advantage of that fact,
and if C′≺C then f ′ may have to be a redefinition, coercing the function
value, if necessary.

(2) Strongly implement the type T ′ and the T ′-dependent functions taking ad-
vantage of the computer hardware.

Remark 6. The notation f ′ is our way to refer to the redefined version of some
function f . In an actual specification the symbol f will be overloaded.

In our setting the approximation relation and (nonstrict) equality are defined as
follows. Let d and e be expressions of the same type, say W . Then:

◦ dve
4
= D[d]⇒ D[e] ∧ ∀x : X• (dx)v(e x), for W = X→Y , and

◦ dve
4
= D[d]⇒ D[e] ∧ d=e, for W non-functional.

◦ d==e
4
= dve ∧ evd,

where D is a meta-operator checking the definedness of its argument expression.
In many cases one can obtain equality between the redefined and restricted func-

tions: f ′ == (f as (T ′→U ′)). For instance, that is the case for an automatically
redefined equality relation over a one-to-one generator basis (cf. [5]). In general,
however, intermediate T values could violate the restriction, even if the final func-
tion value would not.

The type T ′ is in itself a (partial) implementation of T , and we may hence wish
to “replace” T by T ′ in some specification S. Call the result S′. Intuitively, this
amounts to replacing every occurrence of T in S by T ′, resulting in a subsequent
rebinding of function symbols. However, since T ′ is a (semantic) subtype of T , the
definition of T ′ depends upon T . Hence S′ must at least contain the generators for
T , and the functions occurring in the constraining predicate. For that reason, S′

will in general contain both T ′ and T . For simplicity, we assume that the resulting
occurrences of T in S′ are isolated within the T module (and the module prefix for
T ′).

In 1’st order specifications both the domain and codomain of a function in T ′

are subtypes of the original domain and codomain. This is not always the case for
higher order specifications (even though the restricted type T is non-functional),
since subtype monotonicity is lost in general. Replacing Nat by the subtype BNat

HIGHER ORDER FUNCTIONS IN ABEL 15

of section 4.1 in a 1’st order setting is discussed in Example 10 in [5]. For a higher
order example, consider the map function of section 2:

func map : (Nat → Nat)→ Seq{Nat} → Seq{Nat}

Replacing Nat by the subtype BNat yields a function with the domain BNat →
BNat and the codomain Seq{BNat} → Seq{BNat}, neither of which is a subtype
of that of map.

Loss of monotonicity hence seems to invalidate the simple form of redefinition
obtained by using the function body as it is, and merely coercing the function value
if necessary. We aim to prove that the simple form for redefinition nevertheless is
sufficient, provided we replace type families rather than single types. We call this
subtype replacement.

First of all, it is important to distinguish between “raw” specifications and type
checked specifications. The type checker in ABEL is allowed to insert applications
of coercions when the type of an expression is not included in the expected type
(inferred from the context). Given a function f : T1 → U and an expression e : T2,
where T2 6� T1, the type checker will transform the application into f(e asT1).
Thus, in type checked specifications, to which type replacement will be applied, no
function is applied outside its domain.

In the context of higher order functions the above requirements to function re-
definition must be somewhat modified. For the purpose of the theorem below it is
sufficient to require:

◦ Every function whose c-codomain has been restricted must be redefined (or
proved with respect to the new profile).

To minimize bureaucracy we shall confuse the distinction between a type expres-
sion TE and its associated value set VTE, and also confuse the subtype relation by
the corresponding subset relation on the value sets.

Lemma 3. Let T be the head of a subtype family, and let P : T → Bool be a re-
striction to be applied on every member of the family. Let the restriction by P of
each Ti � T be T

′

i . For an arbitrary type expression U , let U ′ denote the result of

replacing every Ti by T
′

i in U . Then S � U implies that S′ � U ′.

Proof. By induction on the subtype proof of S�U . The leaves in the proof
are judgements on the form C�D, for C and D non-parameterized, non-functional
types for which an explicit subtype relation is declared. If C and D are subtypes of
T , then C′�D′ follows since the subset relation (on value sets) obviously is main-
tained under restriction by a predicate. Conversely, if C and D are not subtypes of
T , then C′ (D′) is just C (D), and C′�D′ follows by assumption. Now, consider
an inference step in the subtype proof of, say C �D. Since the outermost type
constructor in C′ (and D′) is the same as in C (and D), C′�D′ must be inferred
by the same rule as C�D. By induction we may assume C′i�D

′
i for every premise

Ci�Di in the original proof, and the claim follows. 2

Theorem 1. Let S be a specification, possibly higher order, (consisting of type def-
initions, function profiles, and function definitions). And let e : W be an arbitrary
expression in these functions. Denote by S′ and e′ the result of replacing every
member of the T family with its restriction by some predicate on T (excepting the
T module itself). Then S′ and e′ are well typed, and e′ is an approximation to e:
e′ v (e asW ′).

16 BJØRN KRISTOFFERSEN, OLE-JOHAN DAHL

Proof. First we prove by induction on e that e : W implies e′ : W ′. So assume
e : W . There are two different cases to consider:

◦ e is a variable or a function symbol. Then e′ : W ′ follows from the way type
replacement is defined.

◦ e is an application e1 e2, where e1 : V1 →W and e2 : V2 and V2�V1. e′ is the
application e′1 e

′
2, where the induction hypothesis gives e2 : V

′

1 and e1 : V
′

2 . It

is hence sufficient to prove V
′

2 �V
′

1 . But this follows from lemma 3.

Profiles f : W ′ are seen to be valid from the requirements on function redefinitions:
due to insertion of coercions it can be proved that any complete application of f ′ can
be assigned the c-codomain of f ′. e′ v (e asW ′) follows from function monotonicity
and the fact that each individual function replacement introduces an approximation.
2

Remark 7. All constructively defined ABEL functions are monotonic (with re-
spect to definedness). This follows from the facts that generators are strict, and
that if and case constructs are strict in the discriminand. Notice that higher order
coercions are implemented in terms of 1’st order coercions.

Remark 8. The occurrences of “type expressions” in the names of coercion func-
tions are not replaced. Thus the effect of type replacement is just to change function
bindings to reflect function redefinitions, and the only “new” coercion applications
introduced are the ones occurring inside these redefined functions.

The key to the result is that every member of the subtype family is replaced
by its restriction, and that all functions whose c-codomain is thereby affected are
suitably redefined (or re-proved). The redefinitions make it impossible to build
values outside the restricted domains, which means that further coercions are not
needed.

A simple way to achieve the necessary function replacements is to redefine those
generators of T that can produce values outside T ′ by coercing the function value,
and then rebind all occurrences of these generators (and implicitly the occurrences
of all affected functions).

In some cases execution efficiency can be gained by applying the original genera-
tors, at the expense, however, of proving in each case that coercion is superfluous.
For instance, that would be the case for the successor applications building up the
integer quotient of bounded integers, and for those occurring in the length function
of sequences whose lengths are more strongly restricted.

Remark 9. We have restricted our attention to specifications in which all used
functions are constructively defined. That seems reasonable in the context of type
replacement for executability. In particular, any loosely specified function used in
some module can be assumed to be bound to a defined one whose definition satisfies
the axioms assumed for the former.

References

[1] H. P. Barendregt. The lambda calculus: its syntax and semantics. North-Holland,
Amsterdam, 1984.

[2] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of logic in computer science — volume 2, pages
118–309. Oxford Science Publications, 1992.

HIGHER ORDER FUNCTIONS IN ABEL 17

[3] O.-J. Dahl. Verifiable programming. International Series in Computer Science.
Addison-Wesley, 1992.

[4] O.-J. Dahl, D.F. Langmyhr, and O. Owe. Preliminary report on the specification and
programming language ABEL. Research report 106, University of Oslo, December
1986.

[5] O.-J. Dahl, O. Owe and T. J. Bastiansen. Subtyping and constructive specification.
Nordic Journal of Computing 5(1), 1998.

[6] T. Freeman. Refinement types for ML. PhD Thesis, Carnegie Mellon University,
1994.

[7] J. A. Gougen. Higher-order functions considered unnecessary for higher-order pro-
gramming. In D. A. Turner, editor, Research topics in functional programming, chap-
ter 12, pages 309–351. Addison-Wesley, 1990.

[8] J. R. Hindley and J. P. Seldin, editors. Introduction to combinators and λ-calculus.
London Mathematical Society Student Series. Cambridge University Press, 1986.

[9] Th. Johnson. Lambda lifting: transforming programs to recursive equations. LNCS,
201:190–203, 1985.

[10] B. Kristoffersen. Higher order terminating generator induction. In NIK’96 (Norsk
Informatikk Konferanse), pages 113-124. Tapir forlag, Norway, 1996.

[11] D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[12] O. Owe. Partial logics reconsidered: a conservative approach. Research Report 155,
University of Oslo, June 1991.

[13] S. van Bakel and M. Fernández. Strong normalization of typeable rewrite systems. In
First International Conference on Higher-Order Algebra, Logic, and Term Rewriting
’93, LNCS 816, pages 21–39. Springer-Verlag, 1993.

