
A Note on Monitor Versions

Essay in the Honour of C.A.R. Hoare

Ole-Johan Dahl

Department of Informatics

University of Oslo, Norway

30th July 1999

Versions of Hoare Monitors have been included and implemented in

several languages for parallel programming. Curiously enough all except

one are nontrivial variations of Hoare's original proposal. We discuss the

relative merits of the di�erent versions from the standpoints of sequencing

control, abstraction, and e�ciency. Our conclusion is that the original

proposal is superior in all three respects, with the possible exception of

one variation. The latter, however, su�ers from other disadvantages.

Keywords: monitors, concurrent processes, programming languages.

1 Introduction

Versions of the Hoare monitor concept, [Ho74], have been introduced and im-
plemented in several programming languages. All versions agree that monitor
procedures are the only items declared local to a monitor object which are acces-
sible nonlocally. Furthermore, their bodies must be executed in critical regions

(CR) with respect to the object. The versions di�er, however, with respect to
the semantics of signal operations. [An91] distinguishes between the following
regimes, which have all been implemented:

• Signal and continue (SC): The signaller retains the CR, whereas the sig-
nalled process joins the main waiting queue to compete for CR.

• Signal and exit (SX): CR is given to the signallee, the signaller is forced
to exit from its monitor procedure activation.

• Signal and wait (SW): CR is given to the singnallee, whereas the signaller
joins the main waiting queue.

• Signal and urgent wait (SU): As SW, except that the signaller joins a
separate waiting queue with priority over the main one.

Tony's own proposal was for the SU regime. He did not, however, provide
a discussion justifying the choice, nor, as far as we know, has anyone else.
Therefore the present essay. The SU regime has been implemented as part of
the Pascal Plus language.

1



[An91] argues in favour of the SC regime. The main argument seems to be
ease of programming.

In our view the following are the main criteria relevant for the quality of a
signalling mechanism, apart from the ease of use.

• Controlling waiting and sequencing is of great importance in the design of
multiprocessing systems, especially in cases of high density tra�c.

• Abstract representation of monitors is a prerequisite for high level speci-
�cation.

• Run time e�ciency.

It follows from the discussions below that the SU regime is much superior to
the SC and SW regimes in all three respects. It is superior also with respect to
ease of programming whenever e�ciency and sequencing control are important.

The SU and SX regimes are fairly similar with respect to the criteria listed.
SX is in general somewhat more e�cient, however, it enforces a restricted pro-
gramming style which is not easy to comply with, and which sometimes requires
more complicated external interfaces than single procedure calls. As mentioned
already by Hoare in [Ho74], an implementation shortcut is possible for those
signal operations that immediately precede monitor procedure end. This means
that the e�ciency gain of SX will be obtained in SU as well, to the extent that
the programming restriction enforced in SX is adhered to. For these reasons the
SX regime is not considered in the following discussions.

It may be useful to specialize the SU regime by applying the LIFO structure
to the signaller queue, thus making signal imperatives akin to semi-coroutine
calls in the sense of [DH72].

2 Program Logic

The programming strategy advocated in [Ho74] is to specify an invariant I for
the variables declared local to the monitor (in addition to their declared types)
to hold between monitor procedure calls, as well as an �await condition� Bc
associated with each condition variable c. Then the following rules of thought
for wait and signal operations in a certain sense extend conventional Hoare
logic for partial correctness:

{I}c.wait{Bc∧I} {Bc∧I}c.signal{I} for V[I,Bc] ⊆ D

Here V[E] is the set of free variables of the expression E, and D is the set
of variables local to the monitor, parameters included, but condition variables
excluded. It is convenient to assume that variables nonlocal to the monitor are
not accessed. The rules may be embellished by conjoining an arbitrary assertion
about strictly local variables to the pre- and postconditions of a wait or signal
in order to express the constancy of such variables.

It turns out that this strategy of formal reasoning is not very strong. For
instance, in the following implementation of a semaphore initialized to zero
su�cient signalling cannot be proved. To wit: the invariant is provable even if
the signal operation of the V procedure is omitted.

2



monitor Sema ==
beg var s :=0, c : condition{Bc : s=1}

invar I : s≥0
proc P == beg if s=0 th c.wait fi; s := s−1 end
proc V == beg s := s+1; c.signal end

end

The fact that all actions caused by a signal operation take place in an unbroken
critical region, can better be taken advantage of by allowing the invariant and
await conditions to refer to condition queues, e.g. through a length function, #,
and by not insisting that the invariant must hold at the time of signalling. A
corresponding reasoning strategy can be formulated as follows:

{I#c
#c+1}c.wait{Bc} {if #c 6=0 thBc#c#c−1 el I fi}c.signal{I}

for V[I,Bc] ⊆ D∪C, where C is the set of declared condition variables. (Notice
that we are treating c.wait and c.signal as assignments to a �variable� #c. That
is logically sound provided that the length operator is the only status observing
function applicable to condition variables.)

Now the monitor invariant of Sema may be strengthened by adding the
conjunct (#c 6=0⇒s=0) stating that no unnecessary waiting will take place, or
in other words: P operations, for a given queuing discipline, wait only as long
as is logically necessary for the variable s to remain nonnegative.

The use of signalling is hampered by the demand that the monitor invariant
must hold in the postcondition. That nearly amounts to a requirement that
signal operations precede immediately procedure end. In [Da94] is shown how
more �exibility may be obtained by de�ning the signaller queue as a LIFO stack,
and introducing a mythical variable representing the essence of that stack.

It happens that await conditions have to depend on data local to the pro-
cedure body containing the wait. If so, the strategies for programming and
reasoning sketched above do not immediately apply. A general solution then is
to resort to semi-active waiting:

while ¬Bc do c.wait od

combined with �su�cient� signalling. This is fairly awkward within the SU
regime, but a partial remedy is to introduce �priority waiting�, see [Ho74]. As
an alternative, [Da94] explains a general technique of enriching the monitor
data structure which enables controlled passive waiting supported by formal
reasoning.

For programming under the SC regime semi-active waiting as above is rec-
ommended. This is an easy way of achieving a certain degree of correctness, to
the extent that �su�cient signalling� can be ascertained. A �signal_all� mech-
anism can help in that respect. Little if any sequencing control is possible with
this style of programming, although priority waits may help to some extent.
Full control of sequencing can be achieved by means of precarious coding, often
involving the use of auxiliary variables, not supported by formal reasoning (at
any rate according to [WB79]), and probably very di�cult to debug. Under the
SW regime, control of sequencing is better, but full control as in SU generally
requires unnatural coding using an auxiliary variable.

3



3 Abstract Representation

Let X be a class object accessible only through its declared operators (�meth-
ods�). In a monoprogrammed environment the abstraction of X would be a
variable whose value is the abstraction of the current state of the object. Each
call for an operator, sayX.p(params) may change the state of X . In the abstract
view each such call is an atomic event, characterized by the parameterized call.
Notice that the historic sequence of parameterized operator calls is an entirely

abstract representation of the variable X , in the sense that only information
observable outside X is included. It is also complete, in the sense that the state
of X is uniquely determined by the current history (assuming that no reference
to variables nonlocal to the object occurs within any of its operators). In the
abstract view of X there is a coarsening of time, such that each event represents
an instantaneous state transition.

In a multiprocessing environment the state ofX is again uniquely determined
by the sequence of calls for X-operators, given that each invocation is a critical
region with respect to the object.

For a monitor object X the abstract view is somewhat more complicated,
because wait operations may incur waiting periods of unbounded length, during
which other X-events may take place. Thus, the initiation and termination of
an operator invocation may be widely separated in time, and occur in separate
critical regions. Therefore the invocation of an operator p must be abstractly
represented by a pair of events, pi, pt (parameterized), representing the initiation
and termination of the invocation, respectively.

It is reasonable to regard an operation performing no wait as atomic, and
according to the SU and SC regimes the initiation and termination will then in
fact occur within the same critical region. That does not in general hold for the
SW regime.

According to the program logic an operation invocation, say p, can by sig-
nalling cause other procedure invocations, q, r, . . . to resume operation and pos-
sibly to terminate. Under the SU regime the corresponding events pi, qt, rt, . . .
will all occur in the same critical region. In abstract terms they should therefore
be viewed as taking place simultaneously. If follows that a meaningful abstract
representation of a monitor object is an historic sequence H of event groups:

H : Seq(Seq(E)), where E is the set of event types for the object.

Each group will consist of one initiation event and zero or more terminations. In
concrete terms the time between groups are intervals of quiescence, the object
waiting for another procedure initiation. Assuming that the queuing disciplines
of all condition queues are given, the contents of each event group is completely
determined by its initiating event together with the history at the time. In
that sense, under the SU regime, the history is a complete representation of the
monitor object.

Sometimes the mutual order of the events of a group is irrelevant and can
be abstracted away. That is e.g. the case for semaphore objects implemented as
above:

H : Seq(Set(P i ∪ P t ∪ V it))

where V i and V t events for convenience are combined into single events of the
class V it. A possible history could be as follows, where each call is identi�ed by

4



tagging the events by the length of the history at the time of initiation:

〈{V it0 }, {P
i
1, P

t
1}, {P

i
2}, {P

i
3}, {V

it
4 , P

t
2}〉

It shows that one P operation could terminate immediately, the next one after
some waiting, whereas the last one still waits.

Let #(H, E) denote the number of events of the class E occurring in H.
Then #(H, P t) ≤ #(H, P i) holds by a general property of monitor histories.
Furthermore, a semaphore property gives #(H, P t)≤#(H, V it). We can, how-
ever, formulate a stronger abstract speci�cation which in addition expresses the
absence of unnecessary waiting:

#(H, P t) = min(#(H, P i),#(H, V it))

For the SC and SW regimes a fully abstract and complete representation of a
monitor object is not possible in general. The sequence of terminations follow-
ing a given initiation event will not be determined by the past history alone, but
may in addition depend on subsequent initiations. For the SC regime a sema-
phore speci�cation can say nothing about waiting times. Thus, the equality
above would have to be replaced by a less-than-or-equals relation. (For the SW
regime an abstract speci�cation could resemble the one above, provided signal
operations immediately preceding procedure end were subjected to a suitable
ad hoc formal treatment.)

Returning to the SU regime, we indicate brie�y how the semaphore imple-
mentation above may be veri�ed with respect to the given abstract speci�cation.
The main idea is to decorate the program text with certain �mythical� decla-
rations and operations. They can be supplied mechanically. In the program
text below the mythical text is marked by curly brackets (which are also used
to denote singleton sets). The operator ` indicates extending a sequence by a
term at its right end. The functions rt and lr stand for the rightmost term of
a nonempty sequence, respectively its �left rest�. ε denotes an empty sequence.

monitor Sema ==
beg {varH : Seq(Set(P i ∪ P t ∪ V it)) = ε}

var s := 0, c : condition {Bc : s=#(H, V it)−#(H, P t)=1 ∧
#c=#(H, P i)−#(H, P t)−1≥0}

invar I : s=#(H, V it)−#(H, P t)≥0 ∧ (#c 6=0⇒ s=0) ∧
#c=#(H, P i)−#(H, P t)≥0

proc P == {I}beg {const Tag := #H; H := H`{(P i)T ag}}
if s=0 th c.wait fi; s := s−1
{H := lr(H)`(rt(H) ∪ {(P t)T ag})} end{I}

proc V == {I}beg {H := H`{(V it)#H} s := s+1; c.signal end{I}
end

Reasoning according to the second strategy mentioned in section 2 is adequate.
The correct await condition may be deduced by left construction of I from the
end of P . The speci�ed preconditions of c.wait and c.signal must be veri�ed.
The fact that I implies the above abstract speci�cation veri�es the semaphore
implementation.

Hoare-like reasoning strategies which permit detailed access to the contents
of condition queues can be devised, which are complete in the sense that any

5



valid monitor implementation may be formally veri�ed with respect to its ab-
stract speci�cation, see [Gj88] and [Ba99]. The rules for wait and signal opera-
tions will play the roles of assumptions for the proof of each monitor procedure.
(For soundness the Hoare logic applicable to monitor procedures must be re-
duced by cutting out the rule of constancy and rules derived from it. Thereby
the veri�cation of the assumption preconditions will be enforced.)

4 Implementation and E�ciency

For evaluating the run time e�ciency of Hoare monitors the main overheads
are the cost C per entry/exit of critical region and the cost E per environment
update. Rough counting gives the following overhead for a monitor procedure
invocation causing n e�ective signal operations, directly or indirectly.

For SU: C + 2(n+ 1)E
For SC and SW: (n+ 1)C + (n+ 2)E

For semi-active waiting the cost per retest is 2E, respectively C+E. We may
safely assume C to be much larger than E. Thus, the SU regime is superior.

It is true that semi-active waiting is sometimes more awkward in the SU
regime, however, as already mentioned, it can always be avoided, sometimes at
the cost of additional data structure in the monitor. Anyway, the use of semi-
active waiting should be discouraged in serious systems programming. It can
lead to catastrophic overheads for tra�c densities approaching saturation.

5 Conclusion

Of the four signalling regimes discussed in [An91] we have shown that the SU
regime is de�nitely superior to either of SC and SW, with respect to sequencing
control and programming logic, abstract representation and speci�cation, as
well as run time e�ciency. Our analysis thus strongly supports Tony's original
choice of regime. It is all the more surprising that both the SC and SW regimes
have been implemented in major programming languages. For instance, the
JAVA concept of signalling is based on the SC regime.

The SX regime can be seen as a restriction of SU. In our opinion it o�ers
no advantages, but it does restrict programming in a way sometimes di�cult
to comply with, and which can require more complicated user interfaces. The
reader is invited to program (and prove) a strictly FIFO version of a read-
ers/writers control satisfying the usual exclusion and concurrency requirements,
assuming FIFO condition queues.

Acknowledgements

Tore Jahn Bastiansen has contributed to this essay through many stimulating
discussions and some well deserved criticism.

6



References

[DH72] O.-J. Dahl, C.A.R. Hoare: Hierarchical Program Structures. In Dahl,
Dijkstra, Hoare: Structured Programming, Academic Press 1972.

[Ho74] C.A.R. Hoare: Monitors: an Operating System Structuring Concept.
Comm. ACM 17(10)(1974), pp. 549�557.

[WB79] J. Welsh and D.W. Bustard: Pascal Plus, another Language for Mod-
ular Multi-programming. Software�Practice and Experience, 9:947�957,
1979.

[Gj88] S. Gjessing: Semantics and veri�cation of monitors and systems of mon-
itors and processes. Distributed computing (1988) 2, pp. 190�200.

[An91] G.R. Andrews: Concurrent Programming, Principles and Practice. The
Benjamin/Cummings Publ. Comp., 1991.

[Da94] O.-J. Dahl: Monitors Revisited. In A.W. Roscoe, ed.: A Classical Mind.

Essays in Honour of C.A.R. Hoare, Prentice Hall 1974, pp. 93�103.

[Ba99] T.J. Bastiansen: In preparation.

7


